Página 11 dos resultados de 6914 itens digitais encontrados em 0.016 segundos

‣ Disruption of cellular signaling pathways by daunomycin through destabilization of nonlamellar membrane structures.

Escribá, P V; Sastre, M; García-Sevilla, J A
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 01/08/1995 Português
Relevância na Pesquisa
255.42033%
Albeit anthracyclines are widely used in the treatment of solid tumors and leukemias, their mechanism of action has not been elucidated. The present study gives relevant information about the role of nonlamellar membrane structures in signaling pathways, which could explain how anthracyclines can exert their cytocidal action without entering the cell [Tritton, T. R. & Yee, G. (1982) Science 217, 248-250]. The anthracycline daunomycin reduced the formation of the nonlamellar hexagonal (HII) phase (i.e., the hexagonal phase propensity), stabilizing the bilayer structure of the plasma membrane by a direct interaction with membrane phospholipids. As a consequence, various cellular events involved in signal transduction, such as membrane fusion and membrane association of peripheral proteins [e.g., guanine nucleotide-binding regulatory proteins (G proteins and protein kinase C-alpha beta)], where nonlamellar structures (negative intrinsic monolayer curvature strain) are required, were altered by the presence of daunomycin. Functionally, daunomycin also impaired the expression of the high-affinity state of a G protein-coupled receptor (ternary complex for the alpha 2-adrenergic receptor) due to G-protein dissociation from the plasma membrane. In vivo...

‣ Cellular recombination pathways and viral terminal repeat hairpin structures are sufficient for adeno-associated virus integration in vivo and in vitro.

Yang, C C; Xiao, X; Zhu, X; Ansardi, D C; Epstein, N D; Frey, M R; Matera, A G; Samulski, R J
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /12/1997 Português
Relevância na Pesquisa
255.42033%
The human parvovirus adeno-associated virus (AAV) is unique in its ability to target viral integration to a specific site on chromosome 19 (ch-19). Recombinant AAV (rAAV) vectors retain the ability to integrate but have apparently lost this ability to target. In this report, we characterize the terminal-repeat-mediated integration for wild-type (wt), rAAV, and in vitro systems to gain a better understanding of these differences. Cell lines latent for either wt or rAAV were characterized by a variety of techniques, including PCR, Southern hybridization, and fluorescence in situ hybridization analysis. More than 40 AAV-rAAV integration junctions were cloned, sequenced, and then subjected to comparison and analysis. In both immortalized and normal diploid human cells, wt AAV targeted integration to ch-19. Integrated provirus structures consisted of head-to-tail tandem arrays with the majority of the junction sequences involving the AAV inverted terminal repeats (ITRs). No complete viral ITRs were directly observed. In some examples, the AAV p5 promoter sequence was found to be fused at the virus-cell junction. Data from dot blot analysis of PCR products were consistent with the occurrence of inversions of genomic and/or viral DNA sequences at the wt integration site. Unlike wt provirus junctions...

‣ A search for structurally similar cellular internal ribosome entry sites

Baird, Stephen D.; Lewis, Stephen M.; Turcotte, Marcel; Holcik, Martin
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
255.48875%
Internal ribosome entry sites (IRES) allow ribosomes to be recruited to mRNA in a cap-independent manner. Some viruses that impair cap-dependent translation initiation utilize IRES to ensure that the viral RNA will efficiently compete for the translation machinery. IRES are also employed for the translation of a subset of cellular messages during conditions that inhibit cap-dependent translation initiation. IRES from viruses like Hepatitis C and Classical Swine Fever virus share a similar structure/function without sharing primary sequence similarity. Of the cellular IRES structures derived so far, none were shown to share an overall structural similarity. Therefore, we undertook a genome-wide search of human 5′UTRs (untranslated regions) with an empirically derived structure of the IRES from the key inhibitor of apoptosis, X-linked inhibitor of apoptosis protein (XIAP), to identify novel IRES that share structure/function similarity. Three of the top matches identified by this search that exhibit IRES activity are the 5′UTRs of Aquaporin 4, ELG1 and NF-kappaB repressing factor (NRF). The structures of AQP4 and ELG1 IRES have limited similarity to the XIAP IRES; however, they share trans-acting factors that bind the XIAP IRES. We therefore propose that cellular IRES are not defined by overall structure...

‣ Gamma-tubulin can both nucleate microtubule assembly and self-assemble into novel tubular structures in mammalian cells

Fonte: The Rockefeller University Press Publicador: The Rockefeller University Press
Tipo: Artigo de Revista Científica
Publicado em 01/09/1995 Português
Relevância na Pesquisa
255.42033%
alpha-, beta-, and gamma-tubulins are evolutionarily highly conserved members of the tubulin gene superfamily. While the abundant members, alpha- and beta-tubulins, constitute the building blocks of cellular microtubule polymers, gamma-tubulin is a low abundance protein which localized to the pericentriolar material and may play a role in microtubule assembly. To test whether gamma-tubulin mediates the nucleation of microtubule assembly in vivo, and co-assembles with alpha- and beta-tubulins into microtubules or self-assembles into macro- molecular structures, we experimentally elevated the expression of gamma-tubulin in the cell cytoplasm. In most cells, overexpression of gamma-tubulin causes a dramatic reorganization of the cellular microtubule network. Furthermore, we show that when overexpressed, gamma-tubulin causes ectopic nucleation of microtubules which are not associated with the centrosome. In a fraction of cells, gamma-tubulin self-assembles into novel tubular structures with a diameter of approximately 50 nm (named gamma-tubules). Furthermore, unlike microtubules, gamma-tubules are resistant to cold or drug induced depolymerization. These data provide evidence that gamma-tubulin can cause nucleation of microtubule assembly and can self-assemble into novel tubular structures.

‣ The art of cellular communication: tunneling nanotubes bridge the divide

Gurke, Steffen; Barroso, João F. V.; Gerdes, Hans-Hermann
Fonte: Springer-Verlag Publicador: Springer-Verlag
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
255.42033%
The ability of cells to receive, process, and respond to information is essential for a variety of biological processes. This is true for the simplest single cell entity as it is for the highly specialized cells of multicellular organisms. In the latter, most cells do not exist as independent units, but are organized into specialized tissues. Within these functional assemblies, cells communicate with each other in different ways to coordinate physiological processes. Recently, a new type of cell-to-cell communication was discovered, based on de novo formation of membranous nanotubes between cells. These F-actin-rich structures, referred to as tunneling nanotubes (TNT), were shown to mediate membrane continuity between connected cells and facilitate the intercellular transport of various cellular components. The subsequent identification of TNT-like structures in numerous cell types revealed some structural diversity. At the same time it emerged that the direct transfer of cargo between cells is a common functional property, suggesting a general role of TNT-like structures in selective, long-range cell-to-cell communication. Due to the growing number of documented thin and long cell protrusions in tissue implicated in cell-to-cell signaling...

‣ Septins: molecular partitioning and the generation of cellular asymmetry

McMurray, Michael A; Thorner, Jeremy
Fonte: BioMed Central Publicador: BioMed Central
Tipo: Artigo de Revista Científica
Publicado em 26/08/2009 Português
Relevância na Pesquisa
255.48875%
During division, certain cellular contents can be distributed unequally; daughter cells with different fates have different needs. Septins are proteins that participate in the establishment and maintenance of asymmetry during cell morphogenesis, thereby contributing to the unequal partitioning of cellular contents during division. The septins themselves provide a paradigm for studying how elaborate multi-component structures are assembled, dynamically modified, and segregated through each cell division cycle and during development. Here we review our current understanding of the supramolecular organization of septins, the function of septins in cellular compartmentalization, and the mechanisms that control assembly, dynamics, and inheritance of higher-order septin structures, with particular emphasis on recent findings made in budding yeast (Saccharomyces cerevisiae).

‣ Live Imaging of Dense-core Vesicles in Primary Cultured Hippocampal Neurons

Kwinter, David M.; Silverman, Michael A.
Fonte: MyJove Corporation Publicador: MyJove Corporation
Tipo: Artigo de Revista Científica
Publicado em 29/05/2009 Português
Relevância na Pesquisa
255.48875%
Observing and characterizing dynamic cellular processes can yield important information about cellular activity that cannot be gained from static images. Vital fluorescent probes, particularly green fluorescent protein (GFP) have revolutionized cell biology stemming from the ability to label specific intracellular compartments and cellular structures. For example, the live imaging of GFP (and its spectral variants) chimeras have allowed for a dynamic analysis of the cytoskeleton, organelle transport, and membrane dynamics in a multitude of organisms and cell types [1-3]. Although live imaging has become prevalent, this approach still poses many technical challenges, particularly in primary cultured neurons. One challenge is the expression of GFP-tagged proteins in post-mitotic neurons; the other is the ability to capture fluorescent images while minimizing phototoxicity, photobleaching, and maintaining general cell health. Here we provide a protocol that describes a lipid-based transfection method that yields a relatively low transfection rate (~0.5%), however is ideal for the imaging of fully polarized neurons. A low transfection rate is essential so that single axons and dendrites can be characterized as to their orientation to the cell body to confirm directionality of transport...

‣ Crystal structures of the Arabidopsis thaliana proliferating cell nuclear antigen 1 and 2 proteins complexed with the human p21 C-terminal segment

Strzalka, Wojciech; Oyama, Takuji; Tori, Kazuo; Morikawa, Kosuke
Fonte: Wiley Subscription Services, Inc., A Wiley Company Publicador: Wiley Subscription Services, Inc., A Wiley Company
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
255.42033%
The proliferating cell nuclear antigen (PCNA) is well recognized as one of the essential cellular components of the DNA replication machinery in all eukaryotic organisms. Despite their prominent importance, very little biochemical and structural information about plant PCNAs is available, in comparison with that obtained from other eukaryotic organisms. We have determined the atomic resolution crystal structures of the two distinct Arabidopsis thaliana PCNAs (AtPCNA), both complexed with the C-terminal segment of human p21. Both AtPCNAs form homotrimeric ring structures, which are essentially identical to each other, including the major contacts with the p21 peptide. The structure of the amino-terminal half of the p21 peptide, containing the typical PIP box sequence, is remarkably similar to those observed in the previously reported crystal structures of the human and archaeal PCNA-PIP box complexes. Meanwhile, the carboxy-terminal halves of the p21 peptide in the plant PCNA complexes are bound to the protein in a unique manner, most probably because of crystal packing effects. A surface plasmon resonance analysis revealed high affinity between each AtPCNA and the C-terminal fragment of human p21. This result strongly suggests that the interaction is functionally significant...

‣ Identification of GBF1 as a Cellular Factor Required for Hepatitis C Virus RNA Replication▿

Goueslain, Lucie; Alsaleh, Khaled; Horellou, Pauline; Roingeard, Philippe; Descamps, Véronique; Duverlie, Gilles; Ciczora, Yann; Wychowski, Czeslaw; Dubuisson, Jean; Rouillé, Yves
Fonte: American Society for Microbiology (ASM) Publicador: American Society for Microbiology (ASM)
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
255.48875%
In infected cells, hepatitis C virus (HCV) induces the formation of membrane alterations referred to as membranous webs, which are sites of RNA replication. In addition, HCV RNA replication also occurs in smaller membrane structures that are associated with the endoplasmic reticulum. However, cellular mechanisms involved in the formation of HCV replication complexes remain largely unknown. Here, we used brefeldin A (BFA) to investigate cellular mechanisms involved in HCV infection. BFA acts on cell membranes by interfering with the activation of several members of the family of ADP-ribosylation factors (ARF), which can lead to a wide range of inhibitory actions on membrane-associated mechanisms of the secretory and endocytic pathways. Our data show that HCV RNA replication is highly sensitive to BFA. Individual knockdown of the cellular targets of BFA using RNA interference and the use of a specific pharmacological inhibitor identified GBF1, a guanine nucleotide exchange factor for small GTPases of the ARF family, as a host factor critically involved in HCV replication. Furthermore, overexpression of a BFA-resistant GBF1 mutant rescued HCV replication in BFA-treated cells, indicating that GBF1 is the BFA-sensitive factor required for HCV replication. Finally...

‣ Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus

Lew, Matthew D.; Lee, Steven F.; Ptacin, Jerod L.; Lee, Marissa K.; Twieg, Robert J.; Shapiro, Lucy; Moerner, W. E.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
255.42033%
Recently, single-molecule imaging and photocontrol have enabled superresolution optical microscopy of cellular structures beyond Abbe’s diffraction limit, extending the frontier of noninvasive imaging of structures within living cells. However, live-cell superresolution imaging has been challenged by the need to image three-dimensional (3D) structures relative to their biological context, such as the cellular membrane. We have developed a technique, termed superresolution by power-dependent active intermittency and points accumulation for imaging in nanoscale topography (SPRAIPAINT) that combines imaging of intracellular enhanced YFP (eYFP) fusions (SPRAI) with stochastic localization of the cell surface (PAINT) to image two different fluorophores sequentially with only one laser. Simple light-induced blinking of eYFP and collisional flux onto the cell surface by Nile red are used to achieve single-molecule localizations, without any antibody labeling, cell membrane permeabilization, or thiol-oxygen scavenger systems required. Here we demonstrate live-cell 3D superresolution imaging of Crescentin-eYFP, a cytoskeletal fluorescent protein fusion, colocalized with the surface of the bacterium Caulobacter crescentus using a double-helix point spread function microscope. Three-dimensional colocalization of intracellular protein structures and the cell surface with superresolution optical microscopy opens the door for the analysis of protein interactions in living cells with excellent precision (20–40 nm in 3D) over a large field of view (12 × 12 μm).

‣ Closed-form density-based framework for automatic detection of cellular morphology changes

Duong, Tarn; Goud, Bruno; Schauer, Kristine
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
255.48875%
A primary method for studying cellular function is to examine cell morphology after a given manipulation. Fluorescent markers attached to proteins/intracellular structures of interest in conjunction with 3D fluorescent microscopy are frequently exploited for functional analysis. Despite the central role of morphology comparisons in cell biological approaches, few statistical tools are available that allow biological scientists without a high level of statistical training to quantify the similarity or difference of fluorescent images containing multifactorial information. We transform intracellular structures into kernels and develop a multivariate two-sample test that is nonparametric and asymptotically normal to directly and quantitatively compare cellular morphologies. The asymptotic normality bypasses the computationally intensive calculations used by the usual resampling techniques to compute the P-value. Because all parameters required for the statistical test are estimated directly from the data, it does not require any subjective decisions. Thus, we provide a black-box method for unbiased, automated comparison of cell morphology. We validate the performance of our test statistic for finite synthetic samples and experimental data. Employing our test for the comparison of the morphology of intracellular multivesicular bodies...

‣ Arenavirus Infection Induces Discrete Cytosolic Structures for RNA Replication

Baird, Nicholas L.; York, Joanne; Nunberg, Jack H.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /10/2012 Português
Relevância na Pesquisa
255.48875%
Arenaviruses are responsible for acute hemorrhagic fevers with high mortality and pose significant threats to public health and biodefense. These enveloped negative-sense RNA viruses replicate in the cell cytoplasm and express four proteins. To better understand how these proteins insinuate themselves into cellular processes to orchestrate productive viral replication, we have identified and characterized novel cytosolic structures involved in arenavirus replication and transcription. In cells infected with the nonpathogenic Tacaribe virus or the attenuated Candid#1 strain of Junín virus, we find that newly synthesized viral RNAs localize to cytosolic puncta containing the nucleoprotein (N) of the virus. Density gradient centrifugation studies reveal that these replication-transcription complexes (RTCs) are associated with cellular membranes and contain full-length genomic- and antigenomic-sense RNAs. Viral mRNAs segregate at a higher buoyant density and are likewise scant in immunopurified RTCs, consistent with their translation on bulk cellular ribosomes. In addition, confocal microscopy analysis reveals that RTCs contain the lipid phosphatidylinositol-4-phosphate and proteins involved in cellular mRNA metabolism, including the large and small ribosomal subunit proteins L10a and S6...

‣ How to Make a Gonad: Cellular Mechanisms Governing Formation of the Testes and Ovaries

Ungewitte, E.K.; Yao, H.H.-C.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
255.48875%
Sex determination of the gonad is an extraordinary process by which a single organ anlage is directed to form one of two different structures, a testis or an ovary. Morphogenesis of these two organs utilizes many common cellular events; differences in the timing and execution of these events must combine to generate sexually dimorphic structures. In this chapter, we review recent research on the cellular processes of gonad morphogenesis, focusing on data from mouse models. We highlight the shared cellular mechanisms in testis and ovary morphogenesis and examine the differences that enable formation of the two organs responsible for the perpetuation of all sexually reproducing species.

‣ Modified SH2 domain to phototrap and identify phosphotyrosine proteins from subcellular sites within cells

Uezu, Akiyoshi; Okada, Hirokazu; Murakoshi, Hideji; del Vescovo, Cosmo D.; Yasuda, Ryohei; Diviani, Dario; Soderling, Scott H.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
255.48875%
Spatial regulation of tyrosine phosphorylation is important for many aspects of cell biology. However, phosphotyrosine accounts for less than 1% of all phosphorylated substrates, and it is typically a very transient event in vivo. These factors complicate the identification of key tyrosine kinase substrates, especially in the context of their extraordinary spatial organization. Here, we describe an approach to identify tyrosine kinase substrates based on their subcellular distribution from within cells. This method uses an unnatural amino acid-modified Src homology 2 (SH2) domain that is expressed within cells and can covalently trap phosphotyrosine proteins on exposure to light. This SH2 domain-based photoprobe was targeted to cellular structures, such as the actin cytoskeleton, mitochondria, and cellular membranes, to capture tyrosine kinase substrates unique to each cellular region. We demonstrate that RhoA, one of the proteins associated with actin, can be phosphorylated on two tyrosine residues within the switch regions, suggesting that phosphorylation of these residues might modulate RhoA signaling to the actin cytoskeleton. We conclude that expression of SH2 domains within cellular compartments that are capable of covalent phototrapping can reveal the spatial organization of tyrosine kinase substrates that are likely to be important for the regulation of subcellular structures.

‣ Cellular complexity captured in durable silica biocomposites

Kaehr, Bryan; Townson, Jason L.; Kalinich, Robin M.; Awad, Yasmine H.; Swartzentruber, B. S.; Dunphy, Darren R.; Brinker, C. Jeffrey
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
255.48875%
Tissue-derived cultured cells exhibit a remarkable range of morphological features in vitro, depending on phenotypic expression and environmental interactions. Translation of these cellular architectures into inorganic materials would provide routes to generate hierarchical nanomaterials with stabilized structures and functions. Here, we describe the fabrication of cell/silica composites (CSCs) and their conversion to silica replicas using mammalian cells as scaffolds to direct complex structure formation. Under mildly acidic solution conditions, silica deposition is restricted to the molecularly crowded cellular template. Inter- and intracellular heterogeneity from the nano- to macroscale is captured and dimensionally preserved in CSCs following drying and subjection to extreme temperatures allowing, for instance, size and shape preserving pyrolysis of cellular architectures to form conductive carbon replicas. The structural and behavioral malleability of the starting material (cultured cells) provides opportunities to develop robust and economical biocomposites with programmed structures and functions.

‣ Recruitment of Cellular Clathrin to Viral Factories and Disruption of Clathrin-Dependent Trafficking

Ivanovic, Tijana; Boulant, Steeve; Ehrlich, Marcelo; Demidenko, Aleksander A.; Arnold, Michelle M.; Kirchhausen, Tomas; Nibert, Max L.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
255.48875%
The viral factories of mammalian reovirus (MRV) are cytoplasmic structures that serve as sites of viral genome replication and particle assembly. A 721-aa MRV nonstructural protein, μNS, forms the factory matrix and recruits other viral proteins to these structures. In this report, we show that μNS contains a conserved C-proximal sequence (711-LIDFS-715) that is similar to known clathrin-box motifs and is required for recruitment of clathrin to viral factories. Clathrin recruitment by μNS occurs independently of infecting MRV particles or other MRV proteins. Ala substitution for a single Leu residue (mutation L711A) within the putative clathrin-binding motif of μNS inhibits clathrin recruitment, but does not prevent formation or expansion of viral factories. Notably, clathrin-dependent cellular functions, including both endocytosis and secretion, are disrupted in cells infected with MRV expressing wild-type, but not L711A, μNS. These results demonstrate μNS as a novel adaptor-like protein that recruits cellular clathrin to viral factories, disrupting normal functions of clathrin in cellular membrane trafficking. To our knowledge, this is the only viral or bacterial protein yet shown to interfere with clathrin functions in this manner. The results additionally establish a new approach for studies of clathrin functions...

‣ Development of orally active inhibitors of protein and cellular fucosylation

Okeley, Nicole M.; Alley, Stephen C.; Anderson, Martha E.; Boursalian, Tamar E.; Burke, Patrick J.; Emmerton, Kim M.; Jeffrey, Scott C.; Klussman, Kerry; Law, Che-Leung; Sussman, Django; Toki, Brian E.; Westendorf, Lori; Zeng, Weiping; Zhang, Xinqun; Benj
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
255.48875%
The key role played by fucose in glycoprotein and cellular function has prompted significant research toward identifying recombinant and biochemical strategies for blocking its incorporation into proteins and membrane structures. Technologies surrounding engineered cell lines have evolved for the inhibition of in vitro fucosylation, but they are not applicable for in vivo use and drug development. To address this, we screened a panel of fucose analogues and identified 2-fluorofucose and 5-alkynylfucose derivatives that depleted cells of GDP-fucose, the substrate used by fucosyltransferases to incorporate fucose into protein and cellular glycans. The inhibitors were used in vitro to generate fucose-deficient antibodies with enhanced antibody-dependent cellular cytotoxicity activities. When given orally to mice, 2-fluorofucose inhibited fucosylation of endogenously produced antibodies, tumor xenograft membranes, and neutrophil adhesion glycans. We show that oral 2-fluorofucose treatment afforded complete protection from tumor engraftment in a syngeneic tumor vaccine model, inhibited neutrophil extravasation, and delayed the outgrowth of tumor xenografts in immune-deficient mice. The results point to several potential therapeutic applications for molecules that selectively block the endogenous generation of fucosylated glycan structures.

‣ The Structure of the NTPase That Powers DNA Packaging into Sulfolobus Turreted Icosahedral Virus 2

Happonen, Lotta J.; Oksanen, Esko; Liljeroos, Lassi; Goldman, Adrian; Kajander, Tommi; Butcher, Sarah J.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /08/2013 Português
Relevância na Pesquisa
255.42033%
Biochemical reactions powered by ATP hydrolysis are fundamental for the movement of molecules and cellular structures. One such reaction is the encapsidation of the double-stranded DNA (dsDNA) genome of an icosahedrally symmetric virus into a preformed procapsid with the help of a genome-translocating NTPase. Such NTPases have been characterized in detail from both RNA and tailed DNA viruses. We present four crystal structures and the biochemical activity of a thermophilic NTPase, B204, from the nontailed, membrane-containing, hyperthermoacidophilic archaeal dsDNA virus Sulfolobus turreted icosahedral virus 2. These are the first structures of a genome-packaging NTPase from a nontailed, dsDNA virus with an archaeal host. The four structures highlight the catalytic cycle of B204, pinpointing the molecular movement between substrate-bound (open) and empty (closed) active sites. The protein is shown to bind both single-stranded and double-stranded nucleic acids and to have an optimum activity at 80°C and pH 4.5. The overall fold of B204 places it in the FtsK-HerA superfamily of P-loop ATPases, whose cellular and viral members have been suggested to share a DNA-translocating mechanism.

‣ Analysis of Students' Aptitude to Provide Meaning to Images that Represent Cellular Components at the Molecular Level

Dahmani, Hassen-Reda; Schneeberger, Patricia; Kramer, IJsbrand M.
Fonte: American Society for Cell Biology Publicador: American Society for Cell Biology
Tipo: Artigo de Revista Científica
Publicado em //2009 Português
Relevância na Pesquisa
255.48875%
The number of experimentally derived structures of cellular components is rapidly expanding, and this phenomenon is accompanied by the development of a new semiotic system for teaching. The infographic approach is shifting from a schematic toward a more realistic representation of cellular components. By realistic we mean artist-prepared or computer graphic images that closely resemble experimentally derived structures and are characterized by a low level of styling and simplification. This change brings about a new challenge for teachers: designing course instructions that allow students to interpret these images in a meaningful way. To determine how students deal with this change, we designed several image-based, in-course assessments. The images were highly relevant for the cell biology course but did not resemble any of the images in the teaching documents. We asked students to label the cellular components, describe their function, or both. What we learned from these tests is that realistic images, with a higher apparent level of complexity, do not deter students from investigating their meaning. When given a choice, the students do not necessarily choose the most simplified representation, and they were sensitive to functional indications embedded in realistic images.

‣ The Quasi cellular nets-based models of transport and logistic systems

Aristov, Anton
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 26/11/2015 Português
Relevância na Pesquisa
255.48875%
There are many systems in different subjects such as industry, medicine, transport, social and others, can be discribed on their dynamic of flows. Nowadays models of flows consist of micro- and macro-models. In practice there is a problem of convertation from different levels of simulation. In the different articles author descriptes quasi cellular nets. Quasi cellular nets are new type of discrete structures without signature. It may be used for simulation instruments. This structures can simulate flows on micro- and macro levels on the single model structure. In this article described using quasi cellular nets in transport and logistics of open-cast mining.